INSURAL*

INSULATING REFRACTORY MATERIAL FOR ALUMINIUM AND ZINC

+ Low wettability / easy to clean
+ High insulating effect / energy saving
+ Good mechanical strength
+ Easy maintenance
+ Low costs
Refractory insulating material
The handling of molten metals requires the use of refractory materials, which protect “man and machine” from the high temperatures of these metals. They also ensure the quality of the melt is maintained or even improved; and keep the machines in good condition, enabling the foundryman to work in a clean and efficient way over an extended period of time.

These refractory materials must be adapted to fulfil the various requirements of the metals. The INSURAL name stands for a group of materials which have proven to be effective especially for aluminium and zinc, for several years now. These materials can also be used for other molten metals, provided the temperature lies below 1000 °C.

The right dimension for every application
INSURAL refractories are available both as a paste and as pre-formed shapes. The INSURAL pastes are highly insulating and can be used, for example, not only as adhesives but also for the repair of cracks and the sealing of joints etc. In the production of ready-to-use shapes, several INSURAL material types are used with differing degrees of strength and insulating properties. Examples of use are launders, nozzles and pre-fabricated pouring ladles for 40-2000 kg of aluminium.

Made to measure shapes
Small shapes with very accurate dimensions can also be produced, which are suitable as permanent feeders in die-casting (e.g. pistons for combustion engines) as gate linings for wheel production and many other applications. The INSURAL 50 refractory system is mainly used for these smaller shapes. It is a paste which is poured, so very complicated geometrical shapes can be manufactured economically.

All INSURAL materials are free from hazardous materials as defined in the “Gefahrstoffverordnung” (German regulations governing the handling of hazardous goods).
Application for metal transport

INSURAL 140 and INSURAL 180 refractories are typically used for larger shapes where strength is more important than insulating properties. This is often the case when relatively large quantities of metal react only slowly to the slightly lower insulation, or when the contact time between metal and INSURAL is short. Typical applications are transport ladles, pouring basins, transfer launders or filling funnels.

The drawings on the right show a filter funnel used to pour molten metal into low pressure or bale-out furnaces. In the upper container, there is a SIVEX* FC filter, which cleans the melt and transfers it turbulence free.

INSURAL 50 insulating sleeves are highly suitable for use as permanent feeders in die-casting. Dependent on the casting they can be used from 500 to several thousand casting operations.

Applications of INSURAL shapes are extremely varied, which is why only the most typical ones can be described in this brochure. Wherever you may need an insulating, non wetting product, please get in touch with us – together we will find a solution to your casting problem.
Low pressure casting is the most common casting process for the production of aluminium wheel rims. The connection between riser tube pipe and die is frequently formed by the upper bush and the intermediate bush, which are made from steel. For the casting process, these must be heated to a high temperature. Because of its highly insulating properties, when INSURAL refractories are used there is no need for further heating.

The upper bush is produced in very many different dimensions and is additionally wrapped in mineral fibre paper, which on the one hand further increases the insulating effect and on the other hand enables a good fit in the steel casing. The intermediate bush is also available in many different dimensions and versions. Special sizes are available.

Advantages:
- No need for heating: Gas savings of up to 25m3/machine per day
- No rising heat, more die chill
- Higher productivity due to shorter cycles
- Better working conditions due to less heat, less noise, cleaner air

Example of upper bush for wheel production
INSURAL dosing furnace applications

INSURAL shapes are also well suited for use in dosing furnace applications where they are a low-cost alternative to clay-graphite parts. Typical applications include the upper filling cone, riser tube, and launder.

The upper filling cone, flow-optimized in accordance with Nielsen principles, is especially of note — it guarantees the turbulence-free filling of the furnace, thereby reducing oxide inclusions in the melt.

INSURAL transport ladle applications

Pre-fabricated INSURAL shapes for transport ladles are already in use for metal quantities from approximately 40 kg to more than 2000 kg. Their installation in existing steel shells is swift and simple.

The newly lined ladle is ready for use once more after a brief period, as a time-consuming drying operation is not necessary.
The tilt casting process needs a pouring basin to fill the mould. These are normally made from steel and very often not lined, but are sometimes coated or lined with standard refractory material. Often these steel pouring basins are continuously heated by gas to avoid heat loss. A typical lifetime for a steel basin is approx. 6000 castings. Where two castings are poured simultaneously pouring may not be perfect and one casting may receive slightly more metal than the other. This will result in one casting being short poured; this causing shrinkage porosity due to reduced feeding and resulting in rejected castings.

Also, after pouring, a skull often remains in the ladle. This skull is mainly aluminium oxide and results in metal loss.

When lining a pouring basin with an INSURAL insert the following advantages are achieved:

- Less heat loss
- A consistent pouring temperature
- More even filling of the two cavities
- Smoother, less turbulent flow
- Thinner skull remaining in the ladle
- Lower reject rate of castings

The outcome should be an improved yield and reduced reject rate of castings. Several designs of pouring basin were reviewed by flow simulation to optimise ladle shape before manufacture.

Applications for tilt casting

INSURAL pouring basin
Technical data

Example: Automotive Foundry, casting type brake calipers and assemblies

- 300% increase in lifetime
- Scrap rate reduced from 8% to 5%
- Cost savings
 - Casting scrap savings: $198,000
 - Machining scrap savings: $36,000
 - Tipper ladle savings: $27,000
 - Skull weight savings: $70,000
 - Dross loss savings: $7,000
- Total annual savings: $338,000

Properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>INSURAL 50</th>
<th>INSURAL 140</th>
<th>INSURAL 170</th>
<th>INSURAL 180</th>
<th>INSURAL 270</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm³)</td>
<td>~ 1.1</td>
<td>~ 1.4</td>
<td>~ 1.7</td>
<td>~ 1.8</td>
<td>~ 2.7</td>
</tr>
<tr>
<td>Strength (MPa (20 °C))</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Expansion coefficient (K⁻¹)</td>
<td></td>
<td>4.5* 10⁻⁶</td>
<td>3.9* 10⁻⁶</td>
<td>0.9* 10⁻⁶</td>
<td>1.25* 10⁻⁶</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.25* 10⁻⁶</td>
</tr>
<tr>
<td>Open porosity (%)</td>
<td>70</td>
<td>42</td>
<td>20</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>Hygroscopicity (% (20 °C, 65% RH))</td>
<td>0.8</td>
<td>0.6</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.0</td>
<td>0.6</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Heat conductivity (W/mK)</td>
<td>0.4 (600 °C)</td>
<td>0.47 (745 °C)</td>
<td>0.85 (745 °C)</td>
<td>0.94 (745 °C)</td>
<td>2.2</td>
</tr>
<tr>
<td>Heat capacity (J/kgK)</td>
<td>950</td>
<td>1011</td>
<td>1050</td>
<td>1100</td>
<td>1150</td>
</tr>
</tbody>
</table>

Sealant / Adhesive

<table>
<thead>
<tr>
<th>Properties</th>
<th>INSURAL 700</th>
<th>INSURAL 800</th>
<th>INSURAL 7480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (wet) (g/cm³)</td>
<td>1.1</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>Density (dry) (g/cm³)</td>
<td>0.6</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Transverse strength (N/mm²)</td>
<td>1.5</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>Heat conductivity (W/mK)</td>
<td>0.08</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Shrinkage (%)</td>
<td>0.05</td>
<td>0.05</td>
<td>-</td>
</tr>
<tr>
<td>Max. appl. temperature (°C)</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
</tr>
</tbody>
</table>